
Math Modeling, Week 9 
Recurrent networks 
Full matrix of connections (bidirectional) 
wij: weight from node j to node i 
bi: bias for node i 
Network state evolves over time, to some equilibrium state or stationary distribution 
 
Hopfield network 
Recurrent network model of pattern completion 
 Attractor network: settles to nearest stored state 
 Content-addressable memory: retrieves a pattern from partial information 
Architecture 

Symmetric connections, wij = wji 
No self-connections, wii = 0 
Binary activation, ±1 

Dynamics 
Asynchronous deterministic updating 

 𝑎"	¬	sign 𝑤")𝑎)) + 𝑏" , with i chosen randomly on each step 
Energy function 
 Measure of discordance of a network state (cf. Smolenky’s harmony) 
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 Update rule always reduces energy 
  Δ𝐸 = Δ𝑎" ⋅ − 𝑤")𝑎)) − 𝑏" : negative if 𝑎" changed 
 Attractors are local minima 
Hebbian learning 
 Set network to some state 𝐚 
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Trained patterns become attractors 
Stability of trained patterns 
 Train on patterns 𝐚8 for 𝑘 ∈ 1, … , 𝐾  
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 Consider network in state 𝐚? 
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 Crosstalk term 
  Interference among patterns 
  Determines storage capacity of network, i.e. before trained patterns are no longer attractors 
  Random patterns, large N: phase transition at 𝐾 ≈ .138 ⋅ 𝑁 
 
 


