Recurrent networks Full matrix of connections (bidirectional) w_{ii} : weight from node *j* to node *i* b_i : bias for node *i* Network state evolves over time, to some equilibrium state or stationary distribution Hopfield network Recurrent network model of pattern completion Attractor network: settles to nearest stored state Content-addressable memory: retrieves a pattern from partial information Architecture Symmetric connections, $w_{ij} = w_{ji}$ No self-connections, $w_{ii} = 0$ Binary activation, ± 1 **Dynamics** Asynchronous deterministic updating $a_i \leftarrow \operatorname{sign}(\sum_i w_{ii}a_i + b_i)$, with *i* chosen randomly on each step Energy function Measure of discordance of a network state (cf. Smolenky's harmony) $E(\mathbf{a}) = -\sum_{ij} a_i a_j w_{ij} - \sum_i a_i b_i = -\mathbf{a}^{\mathrm{T}} W \mathbf{a} - \mathbf{b}^{\mathrm{T}} \mathbf{a}$ Update rule always reduces energy $\Delta E = \Delta a_i \cdot (-\sum_i w_{ij}a_j - b_i)$: negative if a_i changed Attractors are local minima Hebbian learning Set network to some state a $\Delta w_{ij} = \frac{1}{N} a_i a_j$ Trained patterns become attractors Stability of trained patterns Train on patterns \mathbf{a}^k for $k \in \{1, ..., K\}$ $w_{ij} = \frac{1}{N} \sum_{k} a_i^k a_j^k$ Consider network in state **a**^l $a_i^{\text{in}} = \sum_j w_{ij} a_j^l = \frac{1}{N} \sum_k \sum_j a_i^k a_j^k a_j^l = a_i^l + \frac{1}{N} \sum_{k \neq l} \sum_j a_i^k a_j^k a_j^l$ Crosstalk term

Interference among patterns

Determines storage capacity of network, i.e. before trained patterns are no longer attractors Random patterns, large N: phase transition at $K \approx .138 \cdot N$